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ABSTRACT

Preparative ion-exchange chromatography of a two-protein mixture is theoretically considered by the use of numerical
simulations. The mathematical model is a combination of the semi-ideal model for the chromatograpbic process, with the
stoichiometric displacement model for the basic interactions between proteins and the stationary phase. A study of the selectivity
of the adsorption, which appears to be dependent on the loading of the column, makes possible a better understanding of the
chromatograms obtained with either isocratic or gradient elution. Special stress is been laid on the effect of overloading the
column by pointing out displacement effects between proteins. The influence of important adsorption parameters, such as the
characteristic charge or maximum loading capacity, was investigated by considering criteria of production rate, recovery yield and
enrichment of products.

INTRODUCTfON

The preparative purification of biomolecules
from complex mixtures is now emerging as an
important challenge for the pharmaceutical and
biotechnology industries and, among all the
techniques at their disposal, ion-exchange chro-
matography is one of the most effective. This
technique is nowadays widely used for the analy-
sis and purification of peptides, proteins or
polynucleotides [ 11. However, despite its numer-
ous applications, this useful technique really
suffers from a lack of the theoretical bases
necessary for a good understanding of the reten-
tion of polymeric ions, such as proteins.

A great amount of work has already been
carried out in order to understand the phenom-
ena encountered with small organic or inorganic
ions [2-41.  Considering amino acids, Saunders et
al. [5] and Dye et al. [6]  have contributed to the
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understanding of their retention behaviour on
ion-exchange resins. All these models were satis-
factory but their extension to larger molecules
such as proteins, usually characterized by a
complex three-dimensional structure, is not
straightforward. In addition, the number and
spatial distribution of the molecule charges inter-
acting with the support are not easy to evaluate.

Nevertheless, a simple model has been de-
veloped during the last decade to describe the
retention of proteins in ion-exchange chromatog-
raphy. This model, the stoichiometric displace-
ment model (S.D.M.), was sucessfully  used to
predict and simulate the chromatographic
behaviour of proteins under analytical condi-
tions. Nevertheless, numerical problems arising
from the non-linearity of adsorption isotherms in
the high concentration range, combined with the
mathematical complexity of their expression,
have limited the use of the S.D.M. to analytical
chromatography.

Recently, the development of a numerical
method using the S.D.M., and simulating the
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isocratic or gradient elution of a single protein in
ion-exchange chromatography for mass overload
conditions, was reported by Cysewski et al. [7].
This original work, applied to the study of the
chromatographic behaviour of concentrated pro-
teins, is a milestone in the research on the
optimum operating conditions in the preparative
ion-exchange chromatography of proteins. Their
paper also contributes to a better understanding
of the chromatographic peak shapes.

In this work, we extended the study of Cys-
ewski et al. [7]  to the theoretical study of the
separation of a two-protein mixture. Our aim
was not to describe accurately all the physical
phenomena that occur in ion-exchange chroma-
tography, which is not possible when considering
the simplifying hypotheses of the S.D.M. com-
bined with the shortcomings of the numerical
modelling, but to study and compare as a whole
the respective behaviour of isocratic and gradient
preparative elution in order to draw some gener-
al conclusions. This was done first through a
study of the evolution of the selectivity with the
loading factor, and then through the calculation
of parameters specific to preparative separations
such as the recovery yield, the enrichment factor
and the production rate.

MODELLING THE ADSORPTION OF PROTEINS

Introduction
The ion-exchange chromatography of proteins

is often operated with pH or counter-ion concen-
tration variations, especially when gradient elu-
tion is used. These variations may affect the
tertiary structure of the protein and therefore the
charge distribution which notably influences, but
in a little known and unpredictable way, the
affinity of the protein for the support [8].  In
addition, the characteristics of the stationary
phase, such as its charge density and its physical
structure, take on real importance. A model
taking into account all these effects and parame-
ters would be of extreme complexity and would
need too much information about the proteins
and the stationary phase concerned. It has been
found more appropriate to develop a model
requiring less information and which, even
though restricted by its initial hypotheses, could

give correct predictions for a limited range of
operating conditions. This has been the basic
idea for the S.D.M.

Historical background
The basic principles of ion-exchange chroma-

tography, i.e., electrostatic interaction chroma-
tography, were established by Walton [9].  How-
ever, they were restricted to small molecules,
either organic or otherwise. In order to describe
adsorption of polymeric ions with mono-, di- or
trivalent counter ions, a simple model derived
from the work of Boardman and Partridge [lo]
was developed by Regnier and co-workers
[l,ll]. Its major features were restated precisely
by Velayudhan and Horvlth  [12] who, 2 years
later, presented a detailed analysis of the formal-
ism of the model [13].  An interesting study was
also reported by Whitley et al. [8].

Basic hypotheses
This  is a non-mechanistic model based on the

mass action law, whose main principle is that the
displacement of an adsorbed solute is followed
by the stoichiometric adsorption of the displacing
agent, in such a way as to maintain the elec-
troneutrality of the stationary phase [10,14].
Therefore, the adsorbed salt concentration must
be considered to account for the competition for
the adsorption sites between this salt and the
mobile phase solutes.

In the equations of the model presented
below, the proteins in solution will be assumed
to behave ideally, i.e., their liquid phase concen-
tration will be considered to be a correct mea-
surement of their activity. Their activity coeffi-
cient will be then taken as equal to 1 over the
whole concentration range. This hypothesis, un-
realistic even in the preparative mode character-
ized by mass overload conditions, is nevertheless
commonly accepted by most workers for the
sake of simplicity [13].

For well defined experimental conditions, the
S.D.M. considers two distinct co-ion categories:
co-ions of the first type, which are liberated from
the protein when it binds to the support, and
co-ions of the second type, which remain at-
tached during this adsorption process. From this
point of view, the protein may therefore be
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considered as a neutral salt which is totally
dissociated in solution into a poly-ion , i.e., the
protein is bound to co-ions of the second type,
and first-type  co-ions are free in solution [13].
These latter therefore remain thermodynamically
unchanged during the adsorption process, and
simply maintain the solution electroneutrality. In
fact, they are not considered in the final equa-
tions of the model.

The properties of a biopolymer, e.g., its
charge, valency, tertiary structure and size, are
assumed not to vary during the separation
process operated at constant pH.

The stationary phase must be homogeneous
and must have pores of constant shape and size
with a sufficiently large diameter to prevent any
parallel separation by exclusion.

This model does not take into account hydro-
phobic interactions [7,15].

Description of the model
The adsorption-desorption equilibrium of a

protein in ion exchange may be represented by
the following equation:

m,P, + m,A” = ntAP; + miA (I)

where Pi and Pi represent the protein in the
flowing mobile phase and adsorbed on the
stationary phase, respectively. A is the counter
ion (or displacing ion) in the mobile phase and
A” is the counter ion adsorbed; the valency of
the counter ion is mA and the protein is mi-
valent with respect to the chromatographic sup-
port. Let us specify that when a mixture of
proteins is considered, an equilibrium equation
such as that in eqn. 1 is written for each protein.

In a first approach, mi, called the characteristic
charge [16], may be defined as the number of
monovalent counter ions displaced when the
protein adsorbs or, in other words, the number
of charged residues of the protein in direct
contact with the fixed charges of the support
(131.  Also, mi has another significance which
seems more complex to handle. In fact, it ac-
counts for several possible associations between
the protein and the support. Indeed, for given
operating conditions, such as pH and salt con-
centration, several preferential orientations may

co-exist, as shown Whitley et al. [8], who pointed
out at least two kinds of different binding forms
for each protein they studied. These preferential
orientations may depend on the adsorbed pro-
tein concentration [13].  In conclusion, we can
say that mi represents an average for competing
binding forms and therefore its experimental
value may not be an integer. Further, if all the
previous hypotheses oversimplify a specific
system, it will lead to an experimental value of
m, accounting for all the deviations from the
ideal situation, and then mi, initially a simple
value derived from a stoichiometric equation,
will be transformed into an empirical parameter.
However, this does not affect the formalism of
the model, as emphasized by Velayudhan and
Hot-v&h  [13].

Ki, the equilibrium constant of eqn. 1, is as
follows:

-mAflm,
K, _ qi "LA'
l-qq

where qi and qA are the adsorbed protein and
counter-ion concentration, respectively, calcu-
lated per unit volume of particle skeleton. The
other concentrations (C, and CA) refer to the
product in the mobile phase.

The maximum loading capacity of the ex-
changer, Q,, may be defined as the sum of the
sites occupied by all the proteins of the mixture
and the counter ion:

(3)

where N, is the total number of proteins. We can
see that this last equation represents the station-
ary phase electroneutrality condition.

Substituting eqn. 3 in eqn. 2, we obtain the
following isotherm equation:

(4)

where 2 (= milmA) is the stoichiometric charge
ratio of the protein and the counter ion.

As already stated in a previous paper [17], in
reversed-phase chromatography it is not straight-
forward to extrapolate from individual adsorp-
tion isotherms to competitive isotherms. It is
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surprising that, when considering the ion-ex-
change process, this derivation does not need
any other parameters and requires only a modi-
fication of the mass balance for the stationary
phase, as it already appears in eqn. 3 through the
summation term. We can also emphasize the
ability of the S.D.M. to take into account the
counter-ion concentration, which offers among
other advantages the possibility of accounting for
gradient elution chromatography.

It must be stressed that eqn. 4 has the dis-
advantage of being an implicit form of the
adsorbed product concentration as a function of
the liquid phase product concentration. This
unusual feature is of great importance and may
introduce some complications during the numeri-
cal handling of the equations of the model.
Indeed, when several proteins are considered it
is necessary to use a numerical method (the
Newton-Raphson algorithm) for solving non-
linear systems of eqns. 4 (one equation for each
protein).

For very dilute solutions, the total adsorbed
protein concentration becomes negligible com-
pared with Q,, and then eqn. 4 becomes a very
easy to handle explicit equation:

NUMERICAL MODEL

Hypotheses and preliminary remarks
In order to have a good description of the

various physical phenomena encountered in the
separation process of biomolecules in prepara-
tive liquid chromatography, several models have
been proposed. They may be classified into three
main categories: the theory of interferences, the
plate theory and the continuity equations. The
last category offers the greatest number of de-
velopments for both analytical and numerical
descriptions [18].  This kind of modelling was
therefore chosen here and, in particular, we have
used the semi-ideal model, whose numerical
resolution has been undertaken using the R.G.S.
method (from Rouchon and Golshan-Shirazi, its
authors [29]),  which is a particular algorithm
based on finite differences. The simulation pro-
gram was performed in FORTRAN.

The simulations will be based on an isothermal
porous fixed bed, uniformly packed with one-
sized spherical particles, where concentration
profiles are assumed to be one-dimensional.
Diffusion coefficients of solutes in the mobile
and stationary phases are considered to be in-
dependent of concentration. Moreover, adsorp-
tion equilibrium is assumed to be instantaneous.

The semi-ideal model
In the general case, the continuity equation in

the flowing mobile phase for each component is
written as

aci a2c.$ (Fq, + Ci) + 24 * x = Di+ - 2az2 (6)

z and t being spatial and time coordinates,
respectively, F the phase ratio, u the interstitial
fluid velocity and Di,_ the axial dispersion coeffi-
cient for component i. This description of the
phenomena occurring during the separation
should be completed by the continuity equation
for the stationary phase, accounting for internal
mass transfer resistances, and an expression
accounting for the mass transfer rate from the
mobile phase towards the stationary phase (ex-
ternal mass transfer resistance).

The semi-ideal model assumes that all mass
transfer phenomena are very fast. The axial
dispersion coefficient in eqn. 6, which accounts
for molecular diffusion  and dispersion due to the
irregular flow through the porous medium, is
therefore replaced with an apparent dispersion
coefficient Di,ap that accounts also for external
and internal mass transfer kinetics that are
always considered fast but not infinitely fast [19].
Guiochon et al. [20] specified once again that the
molecular diffusion coefficient remains constant
during the separation, which is true for the range
of concentrations used in preparative chromatog-
raphy. Therefore, the apparent dispersion coeffi-
cient, related to this molecular coefficient, is
constant.

It must be noted that, for proteins, mass
transfer kinetics are usually slow [21,22].  How-
ever, as the efficiency of columns is commonly
over several hundred theoretical plates, we shall
assume that these limitations are correctly taken
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into account by the lumped coefficient used by
Guiochon et al. [20], i.e., the apparent dispersion
coefficient. Considering this coefficient, Giddings
[23] has established the following expression:

D
H L  Hu=-=-

*Jv 22, 2 (7)

where t, is the retention time of an unretained
molecule, L the length of the column and H the
height equivalent to a theoretical plate.

The accurate numerical resolution of the semi-
ideal model is not straightforward, owing to
intrinsic errors of the numerical method. One
solution, proposed by Guiochon et al. [20],  is to
consider an infinite efficiency of the column, i.e.,
an infinite number of theoretical plates, and
therefore a zero axial dispersion coefficient. This
leads to the consideration of the ideal model,
written as follows:

The finite difference method has proved to be
a suitable way of solving the ideal model equa-
tion, but it results in chromatographic profiles
affected by a so-called “numerical diffusion”,
due to the finite value of the time and space
increments of the discretization. Nevertheless, it
does correlate well with some experimental
curves. This artificial diffusion may be known,
mastered and tuned to stick to the physical
phenomena and the band broadening well ac-
counted for by the semi-ideal model. Therefore,
while trying to solve numerically the ideal
model, a systematic error is made, resulting in
the solution of the semi-ideal model. This meth-
od proved to be very effective in the work of
Guiochon et al. [20].

NUMERICAL METHOD

Finite difference method
In this method, the movement of products,

from their injection to their exit from the
column, is represented by a discrete distribution
of mass on a grid of spatial and temporal
coordinates. Time and spatial derivatives may be
transformed into finite differences using various
algorithms [24].  In this work, we chose a simple

numerical scheme developed by Rouchon et al.
[25] and successfully used in numerous studies
[20,26-281.

Presentation of the numerical scheme
To evaluate spatial and time derivatives we

have used the following expressions:

ac.I= c;,, - c;,,_,
a2 u

ac. C! _  -CC’_
I= r,n 1 8,” 1
at 7

and finally for the stationary phase:

aq. q/ _ - q!-l_
2= 1,” 1 r.n  1

at 7

where u and z are the space and time incre-
ments, respectively, n refers to the space loca-
tion and i to time. By defining Tj as the ratio of
stationary and mobile phase concentrations
(=q,lC,) and by inserting eqns. 9a-c in eqn. 8,
the following scheme is obtained [24]:

C:,, = C;,,_,  - f [(l + FT;,,_,)C;,,_,

- (1 + FT&)Cj,‘_,]  = 0 (10)

Eqn. 10 is easy to solve as it expresses explicitly
the concentration of component i in the mobile
phase for the cell (3 as a function of previously
calculated concentrations.

A numerical analysis of this scheme from
Guiochon and co-workers [24,29,30]  has shown
that this algorithm leads to a numerical disper-
sion, and therefore to an artificial H given by

I =o(P-1) 01)

where k, is the average value of all the initial
slopes of the components isotherm and P the
Courant number, written as follows [24,30]:

p = (1 +L,)g (12)

As we have already stated, the replacement of
actual derivatives of the ideal model by finite
differences generates a numerical error at each
calculation step. If time and space increments
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are not carefully chosen, it will be very difficult
to control their evolution, and oscillations or
divergence phenomena may appear. A stability
condition is therefore necessary, and the most
commonly used method to check this stability is
the Von Neuman analysis [30].  In our case, the
deduced condition is [24]:

Pzl (13)

Eqn. 13 imposes a Courant number greater than
1. Czok and Guiochon [24] proposed a value of 2
for P. This choice, satisfying the stability condi-
tion, also has the advantage of llxing the space
increment value equal to the H leading to (from
eqn. 11)

a=H (14)
The time increment is then written as

2H(l+  Fk,)
7=

U

Using eqns. 14 and 15, this finite difference
method is termed R.G.S., from its authors’
names, Rouchon and Golshan-Shirazi [29].

From these considerations, it is now possible,
from the actual value of the height equivalent to
a theoretical plate of the column, to simulate,
with the ideal model, actual separations affected
by an apparent physical dispersion, by generat-
ing the corresponding numerical diffusion in the
numerical resolution.

DESCRIPTION OF THE PROBLEM

Protein characterization
We chose two proteins, P, and P2, with rela-

tively close molecular masses (M = 20 000 g
mol-‘) and with a molecular diffusion coefficient
equal to lo+ cm2 s-’ [31].

Column characteristics
The ion-exchange column chosen for the

computations is 5 cm x 4.6 mm I.D. It is filled
with 13-pm  spherical porous particles. The total
porosity (E) is 0.85. The pore size is assumed to
be large enough (1000 A) to avoid any diffusion-
al limitations. The phase ratio [F = (1 - &)I&] is
therefore equal to 0.176. The maximum loading
capacity of the exchanger (Q,) is 11 mM, which

means that 11 mM of a monovalent ion are
necessary to saturate all the adsorption sites
(Q, = 11 mequiv. 1-l). The column efficiency is
calculated using the Knox equation [32]:

2
h=y+vli3++

where h is the- reduced plate height (h = H/d,),
Y the reduced mobile phase velocity (ZJ  = ud,l
D,), f, the average particle diameter, u the
interstitial fluid velocity and D, the molecular
diffusion coefficient of the protein; u will be
taken as equal to 0.01 cm/s for the whole study.

The reduced mobile phase velocity is then 13,
and is nearly five times larger than the mathe-
matical value of the optimum reduced velocity
(%,, = 2.71, from eqn. 16) that gives the smallest
H value for our operating conditions. For all the
production rate calculations done below, we
specify that no optimization of the mobile phase
velocity has been achieved. Therefore, this ve-
locity remains low, but we must stress that it is
not very important, as our aim is to illustrate the
value of the S.D.M. on a few examples. A
strategy for optimization of the experimental
conditions is not our purpose.

When using these numerical values, we may
calculate an H value of 50 pm for both proteins,
which means a number of theoretical plates of
1000 for the whole colwnn and which corre-
sponds to 20 000 theoretical plates per metre.
The efficiency of this column is therefore excel-
lent owing to the small particle diameter chosen
and the large porosity of the column that is
operated with an adequate mobile phase ve-
locity. Further, the molecular diffusion coeffi-
cient is relatively high compared with the usual
values encountered for most proteins, as this
coefficient characterizes rather small proteins.

The gradient
For our study, the gradient profile we used is

always linear. This linear variation of the coun-
ter-ion concentration is started directly after the
feed injection. The counter ion is a small mole-
cule that is assumed not to be affected by the
axial dispersion [33].  Further, we shall assume
that this displacing ion will migrate at the same
velocity as the mobile phase, and therefore that
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the gradient profile does not undergo any de-
formation [7].  No deformation of the gradient
profile assumes that the protein solid-phase con-
centration does not affect the velocity of the
counter-ion concentration to a large extent.

Definitions
Loading factor [34]. This is the ratio of the

amount of injected component to the saturation
capacity of the column for this considered com-
ponent. It is therefore directly related to the
concentration of the injected component:

Ci,OKnjmi

Lfi = Q,(l - e)SL (17)

where Ci,O is the initial concentration of the
injected component, V,,,j the injection volume
and S the column cross-sectional area of the
column. The other parameters (m,, Q,, E and L)
have been defined previously.

Recovery yield. This is the ratio of the re-
covered amount of the desired component to the
amount of this component injected at the column
entrance:

,;; Ci dt

q = Ci,oti”j (18)

where tinj is the injection time and t, and t, the
time limits of the recovery of the considered
component for a given degree of purity that has
been fixed, in the whole study, at a value of 0.98.

Production rate. This is the amount of re-
covered component, at a given purity, per unit
time and per unit column cross-sectional area:

Pri =
EU J;‘: Ci dt &UCi,oti,jYi

t, = t, (19)

where t, is the cycle time. The total cycle time
usually takes into account the time of feed
introduction, the duration of elution and the
duration of a regeneration or washing step if
necessary. To simplify, we shall consider here
that this regeneration duration is small enough to
be neglected. The cycle time will therefore be
defined as the time between the injection of the
products and the time when traces of the most
retained component have left the column. This

simplified definition will provide us with a very
convenient tool.

Enrichment factor. This is the ratio between
the average of the recovered concentrations of
the desired component and the initial concen-
tration of this component:

E. = S:f Ci dt
’ Ct2 - tl)Ci,O

(20)

Selectivity. The selectivity characterizes, for a
binary mixture of known composition, the ability
of the stationary phase to induce different migra-
tion velocities for each component, and there-
fore its ability to separate this mixture:

a = (qPz~cP2Y(qPI~cPl) (21)

RESULTS AND DISCUSSION

Selectivity
We shall concentrate here on a very interesting

feature of the S.D.M. that departs from the well
known competitive Langmuir model generally
used in reversed-phase chromatography and very
occasionally in ion-exchange adsorption of pro-
teins.

The competitive Langmuir model predicts a
constant selectivity for two components, and
does not account for their concentration influ-
ence or the influence of other components. This
is not the case for the S.D.M., which makes it
possible to obtain a much more realistic value of
the selectivity in the case of ion-exchange chro-
matography. Regnier and Mazsaroff [35] stressed
the opportunity of applying to a certain extent
the S.D.M. in reversed-phase chromatography,
an opportunity less rigorously examined, but
which perhaps in the future will lead to an actual
improvement of the modelling of liquid chroma-
tography equilibria.

From the basic equation of the model (see
eqn. 4), the selectivity is formulated as follows:

(qP&) &‘, ““‘A

(r = (qPIG1)  = Kp1( >

X
(2, - %q?pl - &$p, (m~~-m~~)‘m~

mKA > (22)
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Eqn. 22 shows that selectivity depends on,
among other things, the concentration of the
adsorbed components P1 and Pz and on the
counter-ion concentration in the mobile phase.
The theoretical study of such a selectivity, which
includes also the influence of the respective
valency of all the components in the system, will
be very useful in the understanding of the
performances of isocratic or gradient ion-ex-
change chromatography. It should be noted that
Golshan-Shirazi and Guiochon [36] emphasized
that the LeVan-Vermeulen  model [37] can also
lead to a very effective selectivity, but this work
was restricted to reversed-phase chromatog-
raphy. First, we shall investigate the influence of
the counter-ion concentration through a particu-
lar situation.

We shall consider two proteins, P, and P2,
having mpl = 6 and mpz = 4 as characteristic
charges, and Kr, = 3200 and Kr, = 640 as equilib-
rium constant values. These values were chosen
with regard to the experimental work presented
by Whitley et al. [8], where parameters charac-
terizing the S.D.M. were determined. Fig. la
shows the competitive adsorption isotherms of
the two proteins, with constant relative concen-
trations chosen as l:l, and also the evolution of
the selectivity a. These curves are plotted as a
function of the loading factor of the protein Pi.
The maximum loading capacity of the stationary
phase (Q,) is 11 mM (11 mequiv. I-‘),  the
counter ion is monovalent and its concentration
is 20 mM.

It can be seen in Fig. la that protein Pi
saturates the adsorption sites of the support
(Q,,,  = 11/6= 1.83 mM) faster than does pro-

tein P2 <Q,, = 2.75 n&f), this latter being, in
concentrated’ solution, more retained than P,.
Nevertheless, in very dilute solution, the initial
slope of the P1 isotherm (88.57, from eqn. 5) is
greater than that of Pz (58.56). Therefore, in
linear ion-exchange chromatography, protein P1
is more strongly retained than P2, but this latter,
owing to its smaller size, will have a higher
saturation limit. The selectivity, below 1 for
dilute solutions, exceeds this value as it increases
with increasing protein concentration. This evo-
lution therefore gives evidence of a selectivity
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Fig. 1. Selectivity and competitive adsorption isotherms for a
1:l binary mixture of proteins. Q. = 11 mM; m,, = 6; m,, =
4; mA  = 1; Kp,  = 3200; K, =640. (a) C,=2OmM;  (b) CA=
30 mM; (c) CA = 40 mA4.

inversion as a function of concentrations, when
the parameters are carefully chosen.

Still considering Fig. la, it is seen that the
non-linearity of the isotherms is strongly mark-
ed, especially for protein P1 which quickly
reaches its maximum concentration on the
stationary phase. However, this concentration is
not the saturation limit for this protein (Q,, =
1.83 mM),  which cannot be reached becauselof
strong competition for the adsorption sites. The
adsorbed P, concentration reaches its maximum
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value of 0.4 mM for a 10% value of its loading
factor, and then decreases slowly, owing to the
displacement of P, by more strongly linked P2
molecules. The latter will reach their saturation
limit only for very high concentrations, because
they will first have to displace all P1 and counter-
ion molecules. Consequently, the selectivity can
only increase, and this fact is of great interest in
revealing that two very close-lying products
under analytical conditions may, under certain
conditions, be separated more easily in the
preparative mode. We shall present further a
specific example of this situation.

Fig. lb and c show the same curves as in Fig.
la, but with different counter-ion concentrations
(30 and 40 n&f, respectively). These figures
show a similar evolution of the selectivity as in
Fig. la, but the selectivity inversion phenom-
enon previously mentioned is not present here.
In addition, it is worth noting that, at the same
loading factor, selectivity is increased with in-
creasing counter-ion concentration.

Concerning the adsorption isotherms, it is
noticeable that, for a given P, loading factor, the
adsorbed concentration diminishes with increas-
ing counter-ion concentration, which is directly
related to eqn. 1, and gives evidence of the
displacement effects of the counter ion, which is
a basic feature of the S.D.M. In Fig. lb and c,
protein Pz will saturate the stationary phase less
and less easily, and therefore will displace P1 at
much higher concentrations than in Fig. la.

Fig. 2 presents the same parameters as in Fig.
la, but using a divalent counter ion at 20 mM
concentration. We note that the competitive
isotherms have lost their strong non-linear
character previously observed for a monovalent
counter ion. These isotherms are much more
oblique, illustrating the increased displacing ef-
fect of the counter ion and the difficulty, for the
protein, to saturate the stationary phase. Consid-
ering isocratic elution, Cysewski et al. [7] demon-
strated the benefit of using displacing ions with a
high valency in order to limit the tails of peaks in
mass overload conditions.

Fig. 3a and b show the influence of the
equilibrium constants on the selectivity and the
effect, on this parameter, of a large difference
between the saturation capacities of the two

5 . 0

4.5

4.0
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0 5 10 ‘15 20 25
Loading factor of Pl (X)

Fig. 2. Selectivity and competitive adsorption isotherms for a
1:l binary mixture of proteins. Conditions as in Fig. 1, except
the valency of the counter ion is 2.

proteins. The monovalent counter-ion concen-
tration is 30 mM and the maximum loading
capacity of the stationary phase is still 11 mM (11
mequiv. 1-l).  Proteins Pi and Pz considered in
Fig. 3a now have mp, = 6 and mp2 = 2 as charac-
teristic charge. The maximum adsorption capaci-
ty for P1 is therefore 1.83 mJ4 and for P2 5.5
mM. In this instance the isotherms for the two
proteins have similar initial slopes. Here, selec-
tivity is increasing with the loading factor, but
this evolution is markedly faster than that ob-
served in Fig. la. These two proteins, whose
selectivity is around 1 in dilute solution, i.e.,
with a very close aflinity  for the stationary phase,
exhibit a selectivity of around 7 for a 10% value
of the loading factor of P1. Above 5% for this
loading factor, protein Pz, which adsorbs only on
two sites (mp2 = 2), displaces readily the over-
large protein Pi, and this occurs despite the fact
that the adsorption constant of P1 (Kpl = 8200) is
much greater than that of Pz (Krz = 148). In Fig.
3b, for the same previously deflned characteris-
tics, except that the Pz valency is now taken as 3,
we observe very different results. Indeed, one
can see here the major influence of the equilib-
rium constants. These, in this instance, predomi-
nate over the differences in saturation values of
the stationary phase for each protein, so that
displacement of Pi by P2,  observed in Fig. 3a, is
not seen here and will appear only for very high
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Fig. 3. Selectivity and competitive adsorption isotherms for a
1:l binary mixture of proteins. QX= 11 mM; KpI =8200;
I&= 148; mA= 1; CA=30  mM. (a) m,,=6; m,=2;  (b)

rnr.1 =6; rnh =3.

loading factors. In other words, the great affinity
of P, for the stationary phase compensates in a
better way for the influence of its high charac-
teristic charge.

In conclusion, we would stress the value of an
accurate study of competitive isotherms in order
to determine the evolution of the selectivity as a
function of the protein load. This will make
possible a better understanding of the results of a
binary separation and may possibly provide an
effective framework to the choice of good
operating conditions.

As these few comments about the presented
curves have demonstrated numerous parameters

are linked to influence the selectivity and this is
one of the main advantages of the S.D.M. in
accounting, even imperfectly, for their interac-
tions. This also emphasizes the difficulty in
establishing general rules about their respective
influence.

Isocratic elution and gradient elution
For ion-exchange chromatography, elution is

termed isocratic when product separation occurs
at a constant counter-ion concentration. When
this counter-ion concentration increases during
the separation, linearly or not, it is termed
gradient elution. Isocratic elution (IE) and gra-
dient elution (GE) are widely used in analytical
chromatography, where numerous theoretical
studies have contributed to a closer understand-
ing of their characteristics. On the other hand,
concerning the preparative mode, very few
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0.2
I

0.1 B;

0

Fig. 4. Gradient elution of a 1:l binary mixture of proteins in
ion-exchange chromatography. Influence of the loading fac-
tor and the gradient steepness. (a) /3 =0.025 mM SC'; (b)

p = 0.055 mM s-l. Q, = 11 mM; L = 5 cm; u = 0.01 cm s-‘;
E = 0.85; HETP = 50 pm; mp, = 6; mp2 = 4; mA = 1; CA,i  = 20
mM; Kp, = 3200;  K,,, = 640. (1) Lfp,  ~2.61; L& = 1.44; (2)
Lf,, = 12.96; Lfp, = 8.64; (3) L.fp,  = 21.6; Lfp, = 14.4; (4)
Lf,,  = 30.24; Lf,, = 20.16.
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studies have been devoted to the comparison of
these two techniques. For instance, we may
quote the work of Antia and Horvhh [33], but
restricted to reversed-phase chromatography.
Our work, in ion-exchange chromatography, was
inspired by their study, and some conclusions
will prove identical, but specific features of the
S.D.M. will be pointed out.

In preparative chromatography, the last steps
of the purification usually concern a small
number of components. We therefore chose here
to study the separation of a mixture of two
proteins, Pi and PZ, with constant relative con-
centrations (l:l), with mp, = 6 and rnrZ  = 4 as
characteristic charges, and with equilibrium con-
stants &,, = 3200 and Kp, = 640. The counter ion
is monovalent and the ion-exchange column has
been described in a previous section. In every
case considered, protein P2 will be the most
retained component, and therefore the last
eluted.

Fig. 4 shows, for two different values of the
gradient steepness, the evolution of chroma-
tograms with increasing values of the loading
factor. On a qualitative basis, Fig. 4 is very
interesting, as one can observe the global evolu-
tion of mixing zones, and these curves will serve
as an illustration for our conclusions concerning
the comparison of IE and GE.

Fig. 5 presents for each protein Pi and PZ the
evolution for 98% purity, in GE, of the recovery
yield, the enrichment factor and the production
rate, as a function of the loading factor of the
protein under consideration. As a first general
remark, we observe, whatever the gradient
steepness, values of the recovery yield, the
enrichment factor and the production rate that
are always greater for protein Pi than for P2. The
competition for adsorption sites and the greater
affinity of P2 for the stationary phase explain
these results, which are, in fact, the consequence
of the displacement of P, by PZ. This will be of
great interest when the product to be purified is
the one that is “pushed”, like Pr, and therefore
concentrated.

The study of the yield verSu.r the loading factor
provides very useful information concerning the
mixing zones between products. For a fixed
gradient steepness, we notice in Fig. 5a and b,
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Fig. 5. Gradient elution of a 1:l binary mixture of proteins in
ion-exchange chromatography. Yield, emichmwt  and prod-
uction rate as a function of the loading factor, for 98%
purity. L=5 cm; HETP=SO  pm; e=0.85;  QX=ll mM;
CA.,=20  mM; u =O.Ol  cm s-l; mPI=6; m,=4;  m,= 1 ;
Kp, = 3200;  Kp, = 640. V = /3 = 0.025 mM s-‘; 0 = j3 = 0.035
mM s-‘; q = B = 0.045 mM s-‘; A = @ = 0.055 mM s-l.

for both proteins, a slow decay in the yield when
the loading factor increases, leading to a degra-
dation of the separation that could have been
qualitatively seen in Fig. 4. For a fixed loading
factor, the recovery yield for the P1 is inversely
proportional to the gradient steepness, and this
tendency is reversed for PZ, except for low
loading factors. As we have seen previously (see
Fig. l), although the selectivity increases with
increasing counter-ion concentration, the iso-
therms become simultaneously more and more
oblique, leading to a weaker affinity of the
protein for the stationary phase. Therefore, the
more the gradient steepness increases, the less
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the products are retained and have time to
organize themselves in separated bands. This
explains the evolution of the recovery yield for
P1 but not for P2. For the latter, we must
consider the tails of P1 peaks that degrade the P2
yield. Indeed, these tailings-off shorten as the
gradient steepness increases, showing by the way
higher displacing effects of the counter ion (Fig.
4).

Finally, there is an increase in selectivity with
increasing loading factor (Fig. 1), which explains
why the yield of P1 shows a maximum for a 10%
loading factor, except for the lowest gradient
steepness (Fig. 5a). Above this value, the selec-
tivity does not increase fast enough to compen-
sate for mixing effects.

The enrichment factor is an important parame-
ter for evaluating the performance of a separa-
tion technique and indicates the evolution of the
average recovered concentration of a component
with respect to the input concentration. The
curves in Fig. 5c and d illustrate the displacing
power of the counter ion, as one can observe, for
both proteins (except for P1 at loading factors
greater than 45%), an enrichment factor in
direct proportion to the gradient steepness. In
addition, enrichment of P, increases with the
loading factor, exhibits a maximum at about a
30% loading factor and then drops sharply,
because of the predominance of mixing zones.
We can say, therefore, that the more the column
is loaded, the larger is the added displacing
effect of P2 towards P,, so much so that the
mixing zones remain negligible. P2 enrichment
decreases continuously with increasing loading
factor because the tails of P1, although displaced
by P2 and the counter ion, degrade the P2 zone in
proportion to the load, affecting zones where P2
is the most concentrated. Respecting a fixed high
degree of purity for P2 leads to the recovery of
more and more dilute fractions of PZ, explaining
the small values of the enrichment.

The production rate is a useful parameter for
an economic evaluation of the process. In Fig. 5e
and f, the production rate of P1 increases to a
maximum for a 25-30% value of the loading
factor. For PZ, it increases and then stabilizes.
Hence, to a certain extent, the injection of
concentrated products increases the production
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rate and compensates, for a while, the appear-
ance of growing mixing zones. A weak effect, for
P1 production rate, of the gradient steepness is
also seen in Fig. 5e, up to the attainment of a
maximum value. In contrast, the PZ production
rate is greatly dependent on the gradient steep-
ness and increases with increasing linear rate of
change of counter-ion concentration at the inlet.

Fig. 6 gives a qualitative illustration of the
influence of the loading factor and the counter-
ion concentration on chromatograms in IE, and
is as relevant as Fig. 4. Fig. 7 shows the same
study as Fig. 5, with the same proteins, but
undergoing IE. As a first overall comment, one
can observe that all the parameters’ values in this
instance are, whatever the protein, clearly below
those obtained in GE. This is an effect of the
displacing power of the counter-ion gradient,

Fig. 6. Isocratic elution of a 1:l binary mixture of proteins in
ion-exchange chromatography. Influence of the loading fac-
tor and the counter-ion concentration. (a) CA = 25 mM;  (b)
CA=40 mM. QX=ll  mM; L=5  cm; u=O.Ol  cm s-l; E=
0.85; HETP = 50 pm; mP, = 6; mq = 4; mA = 1; KP, = 3200;
Kpz = 640. (1) Lf,, = 2.16; L& = 1.44; (2) Lf,, = 12.96;
I!& = 8.64; (3) Lf,, = 21.6; L& = 14.4; (4) Lf,, = 30.24;
I& = 20.16.
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which “squeezes” the peaks, concentrates the
products and favours the competition for adsorp-
tion sites. In addition, we can say that GE
reduces the cycle time by limiting appreciably
the tail of the last peak [33].

The recovery yield of the two proteins as a
function of the loading factor (Fig. 7a and b)
shows the same evolution as in GE, i.e., a
decrease with increasing loading factor. For a 25
rnJl4  counter-ion concentration, one can notice
(Fig. 7a) that the P, recovery yield shows a
maximum, accounting for the fact that the selec-
tivity increases with the loading factor and that
this augmentation predominates first over the
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Fig. 7. Isocratic elution of a 1:l binary mixture of proteins in
ion-exchange chromatography. Yield, enrichment and prod-
uction rate as a function of the loading factor, for 98%
purity. L = 5 cm; HETP = 50 pm; E =0.85; QX  = 11 mM;
u = 0.01 cm s-l; m,, = 6; mq = 4; m, = 1; Kp, = 3200; Kp, =
WI. v=c*=25  mM; o=c,=30 ti; q =c,=35 nlM;
A=C,=4OmM.
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mixing zone increase, whereas for higher coun-
ter-ion concentrations substantial mixing occurs
rapidly. For a loading factor of Pi larger than
lo%, and as already observed in GE, large
counter-ion concentrations lead to too fast an
elution for competition phenomena to organize
the components in separated zones, and there-
fore to improve the yield of the separation (see
Fig. 7a). Lastly, very weak counter-ion concen-
tration variations result in noticeable differences
in yields (they were smaller in the GE case).

Concerning the PZ yield (see Fig. 7b), the same
tendencies as for protein P1 are observed, except
for a 25 mM counter-ion concentration, where
the yield tends to a zero value, whatever the
loading factor. These very small values mainly
derive from the long tails of the P1 peaks that
“contaminate” P2 peaks, and because the re-
quired purity is high this phenomenon artificially
decreases the recovery yield of PZ. Other calcula-
tions (not shown here) have revealed that, for a
0.97 purity, the PZ yield increases sharply, thus
confirming this explanation.

It can also be seen that, for a given loading
factor and a counter-ion concentration different
from 25 mM, the influence of the displacing ion
concentration on the PZ yield is not the same as
was observed for P2 in GE. To explain this fact,
we must consider that the tails of protein PZ, a
direct consequence of a marked non-linearity of
the isotherm, are much more spread in IE than
in GE, and therefore the yield loss, induced by
the tails of protein P1, affects the results much
less as the overlapping of the two peaks is
smaller.

The evolution in IE of the enrichment for
protein P2 as a function of the loading factor (see
Fig. 7d) is similar to that observed in GE, except
for the particular case of a 25 rnM counter-ion
concentration. The enrichment factor for the
isocratic case is anyway inferior to the gradient
case, demonstrating once again the reduced
displacing power of a constant counter-ion con-
centration.

Concerning protein Pr, we note that enrich-
ment curves (see Fig. 7c) present a maximum.
The lower the counter-ion concentration, the
higher is this maximum value, the latter being
obtained for higher loading factor values. For a
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high counter-ion concentration (40 mA4), the
enrichment factor decays slowly without exhib-
iting a maximum. These results may be ex-
plained if we consider again the influence of the
selectivity that depends on protein and counter-
ion concentrations. For a low counter-ion con-
centration and dilute concentrations of injected
products, the retention characteristics of the two
proteins are more or less similar (see Fig. la for
a 20 mM counter-ion concentration and analyti-
cal conditions), therefore leading to a poor
separation. As the loading factor increases, the
selectivity increases and protein P, is more and
more displaced by protein PZ, which results in
much more concentrated recovered fractions
with respect to Pr. The enrichment reaches a
maximum, then drops when mixing zones
become too large. The more the counter-ion
concentration increases, the more rapidly is the
effect of the mixing zones noticed, explaining the
movement of the maxima.

The evolution of the production rate of pro-
tein P2 as a function of the loading factor (see
Fig. 7f) is similar to that observed in GE, but
with lower values. However, there is an op-
timum 35 mM counter-ion concentration,
beyond which the production rate drops sharply.
Concerning protein P1 (Fig. 7e), we would also
point out that a counter-ion concentration great-
er than 30-35 mM results in a noticeable drop in
the production rate. Therefore, it is not worth-
while in IE to use high counter-ion concen-
trations, either for the production rate or for
enrichment.

In conclusion in this section, we would stress
once again the value of the S.D.M. in investigat-
ing optimum operating conditions for a separa-
tion, but we must add, as did Ghodbane and
Guiochon [38] in their study on reversed-phase
chromatography, that it is very difficult, at a
quantitative level, to extrapolate these results to
other protein mixtures. On the other hand, it
seems that the overall evolution of the parame-
ters under study may be observed in other
situations, provided that the latter remain con-
ventional. However, considering non-standard
configurations, very surprising results may arise,
as will be seen in the next section.

Particular case of a separation markedly
favoured by a selectivity inversion

In this section, we shall show that a rapidly
varying selectivity (with respect to the loading
factor) and corresponding to the case in Fig. 3a,
may result in increasing yields and production
rates when operating at a preparative level.
Antia and Horvath [33] have also shown, in
reversed-phase chromatography, that the more
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Fig. 8. Gradient elution of a 1:l binary mixture of proteins in
preparative ion-exchange chromatography. Yield and prod-
uction rate for 98% purity, as a function of load. L = 5 cm;
HETP = 50 pm; E = 0.85; p = 0.005 mM s-l; QX = 11 mM;
u = 0.01 cm s-l; q., = 6; mq = 2; m, = 1; K,, = 8200; K, =
148. (a) Protein PI; (b) protein Pz. 0 = Production rate;
V = yield.
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saturated the stationary phase is in the products
they considered, the greater is the tendency for
them to separate.

The two proteins Pi and Pz considered here
were the same as above (see Fig. 3). Their
characteristic charges are mr, = 6 and rnrz = 2
and their equilibrium constants Kr, = 8200 and
Kp, = 148. As we already specified in the com-
ments on Fig. 3, these two proteins have very
dissimilar maxima adsorption capacities, which
explains the rapid evolution of the selectivity
with respect to the loading factor. Proteins are
injected in equimolar concentration on to the
column previously equilibrated at a 20 mM
counter-ion concentration, the latter being
monovalent. The separation is performed in GE
with a very low gradient steepness (p = 0.005
mM s-l) in order to eluate the products slowly
enough. Fig. 8a and b show the evolution of the
yield and the production rate versus the loading
factor of each protein and Fig. 9 shows, for
different loading factors, the shape of the chro-
matograms for this separation.

It is noted first that the loading factor of
protein Pi, whose characteristic charge is the
larger, reaches high values, greater than 80%.
Protein P2, with a lower characteristic charge,
although injected at the same concentration as
P, , saturates the stationary phase very slowly and
does not pass beyond a 30% loading factor

0.20

0.15

0.10 I
I

0.05

0

Fig. 9. Gradient elution of a 1:l binary mixture of proteins in
preparative ion-exchange chromatography. Influence of the
1oad.~=0.005mMs-‘;Q,=11mM;L=5cm;u=0.01cm
S -I; ~=0.85; HEl”P=50 pm; m,,=6; m,=2;  m,,=l;
C,,i = 20 mA4;  Kp, = 8200;  Kp, = 148. (1) Lf,,  = 1.72;  L& =
0.576; (2) Lf,, = 8.6; Lfp,  = 2.88; (3) I&, = 25.8; Z& = 8.64;
(4) Lf,,  = 43; z& = 14.4.
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value, leading to different scales for the two
graphs in Fig. 8a and b.

In highly dilute solutions, at a 20 mM counter-
ion concentration, proteins P1 and Pz can easily
be separated in IE (a = k;lk; = 0.19, where ki
and k; are the respective capacity factors). Let us
specify that, under these conditions, protein P1 is
the most retained component (see the definition
of the selectivity, eqn. 21). Indeed, its equilib-
rium constant (Kp, = 8200) is much higher than
that of P2, and at the analytical level its poor
saturation capacity (Qx, = 1.83) does not exert
a great influence. Using GE, under the same
analytical conditions as above, the separation is
also good and protein Pr is still eluted last.

At low loading factor values, the quality of the
separation diminishes with increasing loading
factor, as the selectivity quickly reaches a value
of 1, indicating a similar affinity for both proteins
(see Fig. 3a, for a 30 mJl4 counter-ion concen-
tration). The observed yield therefore drops and
the production rate remains negligible. Under
these conditions, we may note, on curve 1 in Fig.
9, the poor quality of the separation. As the
selectivity increases continuously with increasing
the loading factor, one can see an improvement
in the separation through a rapid increase in the
yield, up to nearly lOO%, and through the linear
increase of the production rate in proportion to
the loading factor. Protein P2 is now the most
retained component.
-Finally, two, proteins, separable at an analyti-

cal level, may surprisingly show, after an inver-
sion of the elution order, high yields and consid-
erable production rates at a preparative level,
provided that their selectivity increases very
sharply with the loading factor. This result is
noteworthy, but we must keep in mind that the
S.D.M., which has made such calculations pos-
sible, has its limitations and its validity decreases
at too high protein concentrations [7].  It is still a
very useful tool that has brought to light such
unconventional situations that appear probable
but still deserve experimental validation.

As a conclusion to this section, it has been
shown that an advantage of the S.D.M. lies in its
multi-parameter character. Indeed, when experi-
menting in the zone where the selectivity was
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near to 1, and considering that the retention time
was the essential parameter, one is tempted to
believe that proteins showing similar chromato-
graphic behaviour also have similar ion-exchange
interactions with the stationary phase. One
might therefore have directed efforts toward
modifying this interaction. In fact, as has been
demonstrated here, this situation resulted from a
coincidence as regards the retention time gov-
erned by two separate parameters, i.e., the
characteristic charge of the protein and its
equilibrium constant, and this does not invali-
date the ion-exchange process, merely the
operating conditions chosen. Although this situa-
tion has been artificially constructed here, it
serves as a clear example of the new insight
given by this approach.

CONCLUSION

The stoichiometric displacement model is a
first step in the understanding of protein adsorp-
tion mechanisms occurring during an ion-ex-
change process, and it provides a simple tool for
investigating the behaviour of these polymeric
ions. Although it is still restricted by oversim-
plified hypotheses, it remains an interesting
research topic that in the future will undergo,
more or less important modifications of its
theoretical bases.

The work presented here has illustrated the
competitive adsorption of two proteins and has
considered the influence of various relevant
parameters such as the counter-ion concentra-
tion, the loading factor and the saturation value
of the stationary phase concentration for the
protein. The preliminary study of the selectivity
from competitive isotherms has proved to be a
good data source in understanding isocratic or
gradient elution and we have stressed the value
of using gradient elution in the preparative
mode. All these computations were done with a
computer program, written in FORTRAN, and
there is no major problem in extending its use to
mixtures with more than two proteins.

Work is in progress to check experimentally
the validity of the S.D.M., and to provide actual
values of the parameters in our computations.

c*,i Initial counter-ion concentration
(kmol m-‘)

ci,O
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Concentration of component i at the

column entrance (kmol m-‘)
Concentration of component i in the flow-

ing mobile phase (kmol m-‘)
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ent i (m” s-r)
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i (m2 s-l)
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s-l)
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Particle diameter (m)
Enrichment factor of component i
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mA
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Equilibrium constant of component i
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Capacity factor for component i
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Load factor of component i
Valency of the counter ion
Characteristic charge of the protein i
Molecular mass (g mol-‘)
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N,
P
Pri

QX
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Number of components
Courant number
Production rate of component i

(kmol rnd2 s-l)
Maximum loading capacity of the ex-
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Saturation value of stationary phase con-

centration for component i (= Q,/mi)
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1-‘c Cycle time (s)

Column cross-sectional area (m”)
Time coordinate (s)
Integration limits for eqns. 18-20 (s)
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tinj

t0

Ti

Time of feed introduction (s)
Residence time of an unretained com-

pound (s)
Mass distribution coefficient; ratio be-
tween the amount of component i in
the stationary and the mobile phases

(=  4i’ci)

U Interstitial fluid velocity (m s-l)
Ktj Volume of feed injection (m’)
z Stoichiometric charge ratio of the protein

and the counter ion
Axial coordinate (m)
Recovery yield of component i

Greek letters

;
Selectivity [= (qilCi)l(qjlCj)]
Linear rate of change of counter-ion con-

centration at the inlet (km01 me3 s-l)
& Total porosity of the column packing
Y Reduced mobile phase velocity

(= UdJD,)
Y

opt
Optimum reduced mobile phase velocity

u Space increment of the grid for the finite
difference method (m)

7 Time increment of the grid for the finite
difference method (s)

REFERENCES

R.R. Drager and R.E. Regnier,
(1986) 147.

J. Chromatogr., 359

D.R. Jenke, Anal. Chem., 56 (1984) 2674.
F. Murakami, J. Chromatogr., 198 (1980) 241.
P. Jandera, M. Janderovl  and J. Churacek,  J. Chroma-
togr., 148 (1978) 79.
MS.  Saunders, J.B. Vierow  and G. Carta, AIChE. J., 35
(1989) 53.
S.R. Dye, J.P. DeCarli, II and G. Carta, Znd. Eng.
Chem. Res., 29 (1990) 849.
P. Cysewski, A. Jauhnes,  R. Lemque, B. Sebille, C.
Vidal-Madjar  and G. Jilde, J. Chromatogr., 548 (1991)
61.

8 R.D. Whitley, R. Wachter, F. Liu and N.-H.D. Wang, 1.
Chromatogr., 465 (1989) 137.

9 H.F. Walton, in E. Heftmann  (Editor), Chromatography,
Van Nostrand Reinhold, New York, 1975, p. 312.

10 N.K. Boardman and S.M. Partridge, B&hem.  J., 5 9
(1955) 543.

11 W. Kopaciewicx, M.A. Rounds, J. Fausnaugh  and F.E.
Regnier, J. Chromatogr., 266 (1983) 3.

12 A. Velayudhan and Cs. Horvath, J. Chromatogr., 367
(1986) 160.

13 A. Velayudhan and Cs. Horvath, J. Chromurogr.,  443
(1988) 13.

14 F. Helfferich, Zon Exchange, McGraw-Hill, New York,
1970.

15 W.R. Melander, Z. El Rassi and Cs. Horvath, J. Chro-
matogr., 469 (1989) 3.

16 Cs. Horvith, W.R. Melander and Z. El Rassi, 9 t h
Znternational  Symposium on Column Liquid Chromatog-
raphy, Edinburgh, July l-5, 19g5, Lecture PL 3.3.

17 J.C. Bellot and J.S. Condoret, Process Biochem., in
press.

18 J.C. Bellot and J.S. Condoret, Process Biochem., 26
(1991) 363.

19 P.C. Haarhof and H.J. Van der Linde, Anal. Chem., 38
(1966) 573.

20 G. Guiochon, S. Golshan-Shiraxi and A. Jaulmes, Anal.
Chem., 60 (1988) 1856.

21 S. Golshan-Shiraxi, B. Lin and G. Guiochon, Anal.
Chem., 61 (1989) 1960.

22 A.M. Katti, J.-X. Huang and G. Guiochon, Biotechnol.
Bioeng., 36 (1990) 288.

23 J.C. Giddings, Dynamics of Chromatography. Part 1,
Principles and Theory, Marcel Dekker, New York, 1966.

24 M. Cxok and G. Guiochon, Anal. Chem., 62 (1990) 189.
25 P. Rouchon, M. Schonauer, P. Valentin  and G. Guiochon,

Sep. Sci., 22 (1987) 1793.
26 G. Guiochon and S. Ghodbane, J. Phys.  Chem., 92

(1988) 3682.
27 S. Golshan-Shirazi and G. Guiochon, Anal.  Chem., 60

(1988) 2364.
28 B.-C. Lin, S. Golshan-Shiraxi, Z. Ma and G. Guiochon,

Anal. Chem., 60 (1988) 2647.
29 M. Cook and G. Guiochon, Comput. Chem. Eng., 14

(1990) 1435.
30 B.-C. Lin, Z. Ma and G. Guiochon, J. Chromatogr., 484

(1989) 83.
31 M.T. Tyn and T.W. Gusek, Biotechnol. Bioeng., 35

(1990) 327.
32 J.H. Knox, J. Chromatogr. Sci., 15 (1977) 352.
33 F.D. Antia and Cs. Horvlth,  1. Chromatogr., 484 (1989)

1.
34 A.M. Katti and G. Guiochon, Anal. Chem., 61 (1989)

982.
35 F.E. Regnier and I. Maxsaroff,  Biotechnol. Prog., 3

(1987) 22.
36 S. Golshan-Shirazi and G. Guiochon, J. Chromatogr.,

545 (1991) 1.
37 M.D. LeVan  and T. Vermeulen,  J. Phys.  Chem., 85

(1981) 3247.
38 S. Ghodbane and G. Guiochon, J. Chromatogr., 444

(1988) 275.


